Cumulative Review ﬁom
Gravitation to Tamofay’s Law




Gravitation

Gravitational force:
- mM , .
Fg =G 1'2 (—I’)
Gravitational Joow'nu’a[ energy:
M
U(r)=-G—
r

‘ﬂngufar momentum (circular motion):

(2o

Total mechanical energy (circular motion):

E . = %mv2 +(—Gﬂ)

total ~—
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Q\/lagnituc[e of force on Joam’cfe Magnitude of force on
due to a spherical shell: ‘particle due to a solid shell:
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‘AP fxam]ofe /. Two satellites of masses
m and 3m, respectively, are in the same circular
orbit about the Earth's center, as shown in the
diagram above. The Earth has mass A/, and /
radius R,. In this orbit, which has a radius of !
2R, the satellites initially move with the same :
orbital speed v  but in opposite directions. {
a.) Derive an expression for the orbital speed VO\\
of the satellites in terms of G, A/, and R..

z Fradial :
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- -

ﬂsing conservation of momentum: vd i

z pl + Z FextAt = Z p2 :I .Ea"h i \‘ Yo
{ ‘ m

9
Ve 7]
[—(3m)vo+mvo:|+ 0 =—(4m)v \\\ . /’l
= —2mv, =—4 /V \\ //w
A
2
= VZLLG M, j
2| 2R,

where again, the negative sign suggests the final velocity is in the same direction
as the original direction-of-motion of the 3m mass.

C[ear[y, the conservation of momentum is the easier way to go here, but both are
educational.
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c.) Calculate the total mechanical energy of the system 7
immediately after the collision in terms of G, m, M, and R,.  ,

8 2R,
M (4
As the gravitational potential energy is U = (—G (e2 (R m)J
apparently: 7
E=—U
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Note: For this new combo-satellite to carry the new velocity //”” T g -
1n a circular orbit, its new radius would have to be: s @\\”0
‘/ Earth R \\’
( 2 : M, 2
GMe(4r§l) — (4m) View j \\ ,?
(rnew) \ I'new \\ 2R, //
2 L P
2( 2R Y90
e 4 2R
GMUm) _ (4 = (4m) ) |- M.
(rnew ) I.new I‘new 2laernew
J
\ J
GMC(41?):G mM, (4 _ 1 -
(rnew ) 2Rernew (rnew ) 2Re

This wouldn’t ﬁapyen, though, as the new motion
would become elliptical looking something like:




ﬂ{efaﬁonsﬁzjas--Simja[e Harmonic Motion

‘Re[au’onsﬁijos a[ways true:

% + (K)X =0 or o+ (K)O =(0 characteristic equation for simple harmonic motion
o= ( K)% angular frequency from characteristic equation

o =27V angular frequency and frequency related

T= % period inversely related to frequency

X = ACOS((Dt + q>) position function for s.h.m.

v=dx it and a= d\/dt - dz% 2 velocity and acceleration functions

V... = OA maximum velocity (happens at equilibrium)

2 . .
a_. =0A maximum acceleration (happens at extremes)
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Summary (f Re[au’onsﬁzjas

For a spring:
FSp = —kxi for idea spring, Hooke’s Law
d’x (k .y : : : :
—+ Xx=0 characteristic equation for simple harmonic motion
dt m
N
W= (—j angular frequency from characteristic equation
m
| I . .
E. = EkA total mechanical energy in system

The Joem’ocf and frecluency of oscillation for a spring is constant no matter what
the spring’s amplitude. How so? A larger displacement will require more
distance traveled to execute a single cycle, but because force is a function of

displacement, it will also generate a larger maximum force, so the period will
stay the same no matter what!
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Examyfe 2 A simple pendulum of length L is observed as Y IO IO
shown to the right. What 1s its period of motion?

’Jf we can show that this system’s N.S.L. expression conforms to simple
harmonic motion, we have it. As the motion 1s rotational, we need to
sum torques about the pivot point. The torque due to the tension 1s zero.
Noting that r-perpendicular for gravity is Lsin0, we can write:

thin:
- (}T(g)gfsine) = L0
d’e L
()52
o dt
—+ (gj sin@ =0 I
dt L mg

This isn’t quite the right form, but if we take a small angle approximation, we
find that for 6 <<, sin® — 0 and we can write:

2
d—?+(§)e=o
d® \L

pin o

’
’
/
——— =
I,
17
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Flectrostatics




gTOUTLd&TLg is the connecting of a structure to a reservoir of charge, often
quite literally the ground, to electrically neutralize the structure.

circuit symbol
for ground

The symﬁof for ground in an electrical circuit 1s shown to the right. —|—

TOMC ﬁing our polarized ball on the

side opposite the rod (I’d like to thank
Michelangelo for the hand) will “ground”
that side, allowing free electrons to run

from the hand to the ball, neutralizing that
side of the ball.

electrons run
onto ball
from ground

[fFf++++++++++|

Remove the hand and rod, and the electrons will

redistribute themselves leaving you with a negatively
charged ball.

This is called CHARGING BY INDUCTION (you are
inducing a charge separation, then removing charge by
grounding).
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?utting it all wgetﬁer: ~ S~ .

—O 2 12 -
g (x> +b?) ‘F1|_k(X2qS;2)
F. :( ‘F1| cos6, — ‘F2| cos@z) (Ai)+(—|F]|sin€)l —|F2‘sin62)(3')

B L (S B S qu[ L T
4me, (X2+a2) (X2+a2)/2 41e, (X2+b2) (x2+b2)/2

\ } \ }

J

—
_ 1 quX _ 1 qQ2X (’1\)+ _ 1 qua B 1 qub (/j)
4re, (Xz +az)% 4re, (Xz +bz)% 47ie, (Xz +az)% 4re, (Xz +b2)%
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Examjofe /. Derive an expres- (),

sion for the electric field at (x,0).
> notice, no charge here,

;o a Y just a point in space
This is very similar to Example 3 > )

(and because the charge ¢ was
positive in that problem, the forces
on it and the direction of the
electric fields will even be the
same). The difference? No need ¢
to include the test charge ¢, just
work with £:

b

@eﬁning the ﬁefaf directions and magnitudes, then break into components:
E= (’El‘ cos 0, —’Ezlcosez)(i)—k (—‘El‘ sin0, —‘Ez‘ sin@z)(j)

a

You'd use the same trickery (sin, =
before. X*+a°

7 ) and finish the problem just like
2

12)




An additional bit of trickery is involved in exploiting the symmetry of the set-up.
Notice there 1s a second dg on the right side at an angle 0 that will produce a mirror-
image differential electric field to our original bit of charge. The x-components of
the two fields will add to zero, so all we really have to deal with is the y-component.

With the linear charge density as:

and £ as: kA

E="do _(2“1% )

we can write:

£ = 2j dE, (—A') — 2jdE cose(—]')

=|-2 L— Vcosede ()
4me, R

B dEy =‘dﬁ‘cos9
(/ R)| e |
6=0

sin®

dE, = ‘d]:l‘cose
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Summing over all of the differential
hoops yields:

1 (X?O) /) >
= | g Y
4TeE, (X2 +r’ )% _[47:80]()(2“2)% dq
B 1 R X charge: Q
I///——rewrltmg dq = (2TcGr) dr
_(2mxo JR r a4 2TXG JR r(x2+r2)_%dr
4me, (x4 rz)/z 4rg, )Ir=0
42
2TX0 -1 2 1 1
e L R A e o P e
TE /(71:80 (X2+R2) 2 (Xz) 2
2
e - o |2
21R g (Xz_I_Rz)% X 21R g (x2+R2)%
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Gauss’s Law




7~
imaginary GguSsian surface AN
/
/ \

Herein [ies the beauty of the method. Because every / \E

/
/

point on the surface is equidistant from the charge, the | >
evaluation of the £ at every differential surface dA \ dA
WILL BE THE SAME, which is to say, IS A \ /
CONSTANT VALUE, and because it 1s a constant, we AN S
can pull it out of the integral. (Note that we couldn’t do e -
that with the original Example 1 because each point was
a different distance from Q.) With that, we can write: J |EH d ;‘;‘ _ Q
s €

That makes ﬁfe wonc[mjif, as now the only thing inside the — ‘]::| j ’d;‘;‘ _Q
integral is the differential surface area dA4, and summing that > €
over the surface simply yields the total surface area of the
sphere (4mtR?) . . . So we can further write

1l Q
B J JaA|=—=
= |E|(47R’)= Q
Look famiﬁ’ar? It should. It’s the same as the €,
electric field function we derived for a point charge — ’E‘ Q

using Coulomb’s Law! 4ne R’
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b.) for r<R: (con’t.—doing this with the density
function . . . though either way would do here)

jE-dA:—L‘)pdV
s £

0

f _%//3 k) _[/741261&]

(¢}

= JSEdAcosOOZ
_(r%{3)Q
8O
_(7
= E(4TC}/52 (63)(2

Q

- r
4me R’

- EdeAz

= E=

Note that this is a linear E-field inside the sphere!
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c.) What does the graph look like for electric field
magnitude versus position?

—_—

E
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b.) for r<R: This is easy. With all the charge on the
surface, the charge enclosed inside the Gaussian
surface 1s zero and:

Note that this suggests that E-fld
functions are discontinuous . . .
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With that, Gauss’s Law becomes:

i,

k
:E(r3_a3)

b.) Derive an electric field for r<a: (It’s zero as no charge inside Gaussian surface.)

¢.) Derive an electric field for r> b:

Same Joroﬁlém as Part a exception of the limits of the integration are different
(you are now adding up ALL the charge inside the cylinder, so the limits go
from ¢ = a to ¢ = b instead of ¢ = a to ¢ = the Gaussian radius r.)

19.)




EedA,,.+2[ E«dA,,=-doos

curve
€

O (6]

curve

= [ (E)dA,, cos90° +2[ (E)dA,,cos0" =7

= 2E[ dA,, —GinsAend

=>2E/\/ﬁ£

:>E—
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fxamjo[e 11: Derive an expression for
the electric field function for an “infinite”
sheet of conducting material whose area
charge density 1s a constant 0,

Cl-[er e s Wﬁ@?’ € the difference in the
charge configurations comes into play.
We could use the same plug we used
with the insulator, but there would be
two surfaces upon which there was
charge placed, each of which would have
a charge density of o . That means:

quwe curve+2J E dA M

€,
GA+GA

thin co sheet

conductor
from side

thin oo sheet

— 2F j dA, ende

(o)

— 9E /X con end
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€

(o)
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3-D view
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Example 16 - Faraday s Ice Pail Experiment

Courtesy of Mr. White:
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FElectric Potentials

(energy considerations)




\ electrical

An ELECTRICAL POTENTIAL \4 sturbance
‘FQQ’ZL@, measuring the amount of potential energy "’\\ //’7

per unit charge AVAILABLE at all points in the region of \

a field-producing charge, can be (and 1s) associated with A// \‘\‘ potential
/

any charge configuration. A field exists

An ELECTRICAL POTENTIAL FIELD exists wherever

there 1s charge (and, for that matter, wherever there 1s an electric field). For the
potential fields to exist, there doesn’t need to be present a secondary charge to feel
the effect. And because voltage-flds tell us how much energy 1s available PER
UNIT CHARGE at a point, the electrical potential field V 1s defined as:

%

fxamy[é 1. How much potential energy does a 2 C charge have at a point where
the absolute electrical potential 1s V, = 3 joules/coulomb?

Vi=— = U =gV,
=(2 C)(3 J/C)=6 J

23)




Work and Electrical-Potential (\/o[tage) Fields

g\/bl?.’ An absolute electrical potential field 1s a modified potential energy field.

fverytﬁing you can do with energy considerations, you can do with electrical
potential functions:

‘Just as the work done on a body moving from W = —AU = —qAV
one point to another in a conservative force field W
equals W =—-AU, we can use the definition of = —=-AV

q

absolute electrical potential to write: and

ﬂyparentfy, if you know the voltage difference between W = —AU = —gAV
two points, you know how much work per unit charge AU

AND potential energy per unit charge the field has = —=AV
available between the two points. q

fExamjofe 52 How much work does a field do on a moving 2 C charge if the
potential difference between its beginning and end points 1s 7 volts?

W_ AV = W=-qAv

! =—(2C)(7J/IC)=-141]
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FElectrical Potential CDiﬁference and fﬂcfs

Assuming we are cfeaﬁ’ng with a constant
electric field and a straight-line path between two
points in the field, we can use the definition of work
(W=F-. a) with the manipulated definition of the
electric field (F = qE) to extend out potential
difference relationship (W =—AV ) into a very
interesting proposition. Specifically:

two points in a
constant E-fld

Was =—AV,, = Fed,g
q ~ q
= fﬁ s _ —AV,,

!

— _AVAB

E.d,, =—-AV,,

And what might we glean from this bit of amusement?
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c)A positive cﬁarge O=1C and mass m=1 kg moves
naturally along the E-fld lines.

i.) s the cﬁarge moving from higher electrical
potential to lower, or lower electrical potential to

higher?

This has notﬁing to do with the charge. Electric fields proceed from higher voltage
to lower, so it’s doing the former.

ii.) s the cﬁarge moving from higher potential energy to lower, or lower
potential energy to higher?
This has EVERYTHIN( G to do with the charge. POSITIVE CHARGES naturally

move from higher to lower voltage along E-fld lines (being by definition the
direction a positive charge would naturally accelerate), so it is moving from higher

to lower potential energy.

11.) le Q’s nitial velocity was ZKE +2U +2 ext ZKE + ZUZ
3 m/s at A, what is its velocity / mv A qV +() — / mv, 24 qV )

at B? (Note that the voltages 1 3
have been put on the sketch.) é<1)(3) +(1)(11)= A(I)VB +(1)(3)
= vy =4.58 m/s
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plates viewed

e.) An electron (e=1.6x10""C, m=9.1x10""kg) from Tide |

accelerates between the plates. How fast 1s it moving C

if 1t started from rest? l j lBj l l
Note that the electron (charge —e) would accelerate A
from the negative the positive plate, and that the |
potential energy of a charge sitting at a point whose l

e ; .. |

b
potential is Vis U =qV with the charge’s sign included, | voltage] lhi voltage
we can write: terminal terminal

YKE + DU +X)W_ =>KE+ YU,
0 +((-e)V.)+ 0 :/2mvz+((—e)V+)
= (-1.6x107°C)(2 V)= 1/(9.1x10™" kg)v,’ +(~1.6x107°C)(14 V)
= v=2.1x10° m/s
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‘A Syemﬁc Case--The Electrical Potential
Generated Ey a POINT CHARGE

fX&lWlJO[@ 11: Derive a general expression for the electrical
potential generated by a point charge O?

E
Setting the zero point \-‘\\'\T ///r

for the electrical V()= V(o) = —[ EodF @———>
potential to be where ()= V() J = 147 \\
the electric field is zero __[ k%f) . df / l\
(i.e., at infinity), and el T
using the electrzc:ﬁeld __[" k% dr(cosOO)
Jfunction for a point Jr=o\ T
charge as B=kQ , T, ( 1)
., /T =—kQ| —— ||
we can write: r )=

= V(I')pt chg :[ ! g

4me, ) r
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So How Are Electric Fields and
Flectrical Potentials Related?

CRememBer 601C é {0 the Energy chapter when we related a conservative
force function to its potential energy function. We found that the spatial rate of
change of potential energy equals the force associated with the potential energy
field, or F = _(d%x) 1. There 1s an electrical analogue to this.

That is, the differential consequence of:

T —

V(r)—V(zero pt)= —j E.dr
Zero p

is

dV=-E.df
, . . . dVv .
But 1f that is true, it must also be true that: E = —d—r
I
Except in Cartesian coordinates (assuming E is in the x-direction), E = — (Cil—vi
X

which can be expanded into multiple dimensions using the del operator as:

— oV, dV~ dV
E=-VV=—| —i ' k
(axH_ayJ_'_ 0z j
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Examjofe 12: Assume the charges are Q |~__ N
equal and opposite, and are placed \\\\(f +a’)
symmetrically as shown. 4 el
a.) Is there an electric field at (x,0). —-(x,0)
If so, in what direction 1s 1t? // \
There will be an E-fld at (x,0). By 4 ///”/ y
inspection, its x-components will add to T (x + az) g
zero leaving it with only y-components. Q-

b.) Is there an absolute electrical potential at (x,0). If so, in what direction is it?

TRICK QUESTI0N—electrical potentials don’t have directions as they are scalars.

As for magnitude:
V. .= V,

total Q

+ V_Q

[ 1 j Q +( 1 ] —Q
4me. (Xz +az)% 4me, (Xz +az)%
=0

¢.) Does this make sense?

Yes, 1f you understand how E-flds and voltage flds are related to one another.
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QZXCLTVL}O[@ 13 (A non-A%P J?roﬁfem) dVv =k 4 dq
Derive an expression for the electrical |

p otential at the Orlgln due to a rod with ;:; ——————————— }—
charge -O uniformly distributed over its >dx<—
length L. X i

This extended cﬁarge distribution is something you’ve already seen. The

solving technique is exactly as was before. Define the differential electrical
potential at the origin due to a differential bit of charge,then sum that differential
electrical potential over the entire rod. You’ll again need to define a linear charge

density function dq
A =—-Q/L and note V= JdV .L + 4TE, X
that dq = Adx. With
that, we can write: et 10 (Adx _( A) a+L dx
Yx=a 4me X 4me, x D ¢
-Q
)

)= g+ )= (-1na)]

4me L

= —Inx
4me,

N 4;2L[(1n(a)—1n(a+L))} B 4;2L ln((ajL)]
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EXOLTVLJO[Q 15: A ring situated in the x-z
plane (as shown) has —O s worth of charge
on it.

a.) What is the direction of the E-
fld at (x,0)?

From observation, it’s —i.

~<_.--these

b.) Derive an expression or V at (x,0)? R/
TP components are
V= J'dV L the same.
thése components
= l J dq 1 cancel out.
4me, (Xz L R2 )A
]
1
41e, (x2 +R2)/2
_ —Q
= 1
4me, (x° +R2)A

¢.) Do the results from Parts a and b make sense together?

sure
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c.) Sketch the
graph for:

E-fld vs position
AND the
electrical
potential field vs.
position.

|
|
|
|
|
|
Notice that |
whereas the E-fld R r
functions is
discontinuous, the Q
(4me R)

V-fld function 1s EWQ
CONTINUOUS! | 4re r
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SUMMARY—Conductors . . .

FElectric Fields:

a.) Free charge on a conductor 1n a static setting stays on the conductor’s surface.

b.) Close to the surface of a conductor, the E-fId is perpendicular to the surface

and has a magnitude E = % .

(o)

c.) Inside a conductor, the E-fId is zero 1n a static charge situation (otherwise,
electrons would migrate).

FElectric Potentials:

a.) Free charge on a conductor will distribute itself so as to create a equipotential
surface (the voltage will be the same at every point on the surface)..

b.) As the electric field inside a conductor is zero, the voltage field (the electrical
potential field) inside a conductor will be CONSTANT.

34.)




Ca}mcimnce




Furthermore, the charge O on ONE PLATE will
always be proportional to the magnitude of the volrage +Q —Q
difference across the plates, with the proportionality
constant being the cap’s capacitance. Mathematically,
then:

Qon one plate C(AV)across plates + 1=

’Usua([y written 1in truncated form as:
Q=CV

this also means that the Q

capacitance is defined as: C= v \ J

This, in turn, means the capacitance of a capacitor is a AV
constant that tells you how much charge per volt the capacitor
has the capacity to hold.

Tts unit of coulombs per volt 1s given a special name—the farad.

It’s not uncommon to find capacitors in the range of: millifarad (mf=10"f ), or
microfarad (Mf or uf =107°f ), or nanofarad (nf =10""f), or picofarad (pf =10"""f).
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fxam}a[e 5: Derive an exyression for the
capacitance-per-unit-length of a coaxial cable of
inside radius a and outside radius b.

1.) Assume charges (in this case,
a linear charge density A ):

2.) Noting that all the charge will . 4S8 — Yenclosed
g E-dS

migrate to the inside surfaces, usea 75 €,
Gaussian cylinder (?f length L anq — |]::‘ (2ml)="=
Gauss s Law to derive an expression €,
for the E-fld between plates. — E= A

2Te r

3.) Derive an .
expression for the Vewp = —AV = +JE odr

electri.cal (" ( A f]-(dr f)=—— —dr//OO

potential r=a| 2mE, 1 —a
difference (V) A Y B b
between the B 2me, In(r)| .-, = %[ln(b)—ln(a)] T e In N

plates:
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\ = Q
fEXC@JQf L

A A ln(k)
’ 2me, \a

i (%)m(bj

2Te,

SO

a

4.) ‘Using the afeﬁniu’on of capacitance:

-  (Qun onepi)

parallel plate cap ~ (V )
across plates
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So the Jaamﬂéf-yfate capacitor derivation would look like: © —

J.]_"j'dgzi = E/(:% — E:i
s KE, KE, K€,
with O= 9, (2/ —_—
A E. S _ Al Q
KE, K€, KEA A
That means: V,, =—AV= +JE o dT <T>
d

= ro( Q f")-(drf): Q Jiodrcosoo

Ke A Ke, A
- ! (1‘) f:(): 9 d
Ke A Ke A
and

. Q) @

parallel plate cap ~— (V ) ( Q j
across plates d

A Ke A
=K, — (: KCW/O diel)
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DC Circuits




Examy[e 3¢ Current passes through a resistor? During some period of time,
assume ¢ 5 worth of charge passes through the resistor. How much work 1s done on
that charge? R

Assume the vofmge on W= —AU=—q AVO -

either side of the resistor V., V =0
isV.and V. =0 =—q(¥.-V,) i
respectively. With that, =qV,
ite:
we can write —qV,
Examja[e 4: How much power is being W —AU
dissipated by the resistor in the previous problem? P= At At
Power is work per unit time, so: qVy ( q )V
- _ R
In short: P =1V, At At
= 1 Vi

This is generally true, but according
to Ohm’s Law, we an write: P=iV, = i(iR)

=i’R
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Characteristics of a Series Combinations

——Fach element in a series combination is R R R
1 2 3

attached to its neighbor in one place only. J\N\/_va\f_/\w

--Current 1s common to each element in a
series combination.

--There are no nodes (junctions—places where current can slit up) internal to series
combinations.

--The ecluimfent resistance for a series combinationis: R =R, +R,+R,+...

--This means the equivalent resistance is larger than the largest resistor in the
combination;

--This means that if you add a resistor to the combination, R, will increase and
the current through the combination (for a given voltage) will decrease.

fxamjo[é 3. Wﬁat’s the equivalent resistance
ofa5 Q, 6 Q and 7 € resistor in series? R, = (5Q)+(6Q)+(7Q)

=18 Q
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Characteristics of a Parallel Combinations
R3

-—Fach element in a series combination is attached to its

--Vo[i‘age 1s common to each element in a parallel combination.

neighbor in two place. M
. . . . Rl

-~ There are nodes (junctions—places where current can slit up)
internal to parallel combinations.
1 1 1 1
=—+—+—+
eq Rl Rz R3
--This means the equivalent resistance is SMALLER than the smallest resistor
in the combination;

- The ecluimfent resistance for a parallel combination is:

--And, if you add a resistor to the combination, R, will decrease and the
current through the combination (for a given voltage) will increase.

fxamjo[é 3: What’s the A /1 o yl o +%1 Q)

equivalent resistance of three one-
ohm resistors 1n parallel? = A =.333 Q)

41)




fxamjafe o: ‘Tﬁe current from the battery A A

1s 3 amps. How much current goes through the
upper branch of the parallel combination? I
- : 24 Q)
This is another use-your-head question. A A
1f the upper branch has half the i
resistance of the lower branch, it should
draw twice the current. i ‘ |
— \/ \/ ‘ |
With 3 amps coming in, that means 2 amps 6O 10V

should pass through the upper branch.

Note: AP questions often have easy, non-mathematical, use-your-head solutions
like this. That is why I’m showing you screwball problems like this. We will get
into a more formal approach for analyzing circuit problems shortly.
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Some CDeﬁnitL’ons

‘A BT’QTLC ﬁ.‘ A section of a circuit in which
the current 1s the same everywhere.
—-elements in series are a part of a single
branch (look at sketch).
--in the circuit to the right, there are three
branches.

AA node A/
Loop3 vV ¥
(fbranch - branch\xl
L= L
> [>
Loop 1 Loop 2
\L \‘ : le
node

‘A 1106&3.’ A junction where current can split up or be added to.

--elements in parallel have nodes internal to the combination.

--in the circuit above, there are two nodes.

‘A [OQ}O.‘ Any closed path inside a circuit.

--in a circuit, loops can be traverse in a clockwise or counterclockwise direction.

—-in the circuit above, there are three loops.
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CKWCﬁoﬁE s Laws—the Formal ‘Z(]oproacﬁ

1
With the de ﬁﬂlfLOYlS under your belt, =
Kirchoff’s Laws are simple (and you’ve been
inadvertently using them in the seat-of-the-
pants evaluations). They are: €T .
Loop 1 Loop 2

Kircﬁ()l?s First Law: The sum of the currents
into a node equals the sum of the currents out of a

node. Mathematically, this is written as: z Lo node =Ziout of node
fX&ZMJﬂ[e from the circuit’s Node A: 1, =1, +1,

~

ﬂ(ircﬁcﬁf’s Second Law: The sum of the voltage changes around a closed path (a
loop) equals ZERO. Mathematically, this is written as: Q AV =0

Fxamples: starting at Node A:
Loop 1 traversing counterclockwise: Loop 2 traversing clockwise:

Ri —e+R,i,=0 ~R,i,—R,i,+R,i, =0

Notz: Current moves from hi to lo voltage, so traversing against the current through
a resistor produces a AV that is positive; traversing with current makes it negative. )




Cayaciwrs—Cﬁarging Characteristics

C
fX&lWl}O[@ 10: Consider a resistor, an | /\R/\/—
uncharged capacitor, a switch and a power | L—V__J
supply all hooked in series. Note also that AV. =V, AV, =V,
when the switch is thrown, the voltage across v Al
“a” and “b” is equal to both the battery a /__JL_\ b
voltage and the sum of voltages across the | I
resistor and capacitor. That 1s: ‘Vo
V.=V, +V,
a.) At t = o, the switch is closed. What initially happens in the circuit?
As the cap initially has no charge on its C R
plates, it will provide no resistance to | AN N\
charge flow. That means no voltage drop | L—V__J
across the capacitor with 0 V.= 0 V. =iR
all the voltage drop V. = XZ +V, .
happen across the =iR al,i at t=0 b
resistor . . . which means: Y b |,
= 1 =— ‘ \'/
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Sofw’ng:
__— because |a—b|=(b—a)

ﬂj{ijq:& . if b>a.
dt \RC
dq 1 1 N
dt :(RC)(V(’C_q):(@j(Qm )
= dg __dt //
(q_QmaX) RC ///////
aw dg e dt (/ _ aw —__ L
= (@-Q.) ‘=RC '\ g Quio = RC
t t
= In Q(t) o Qmax o ln|_Qmax = _R_C ln(Qmax o q(t)) B ln(QmaX) - _R_C
- ~ pQa=a®)
= (Q?aé q)(t)) _ _é — el (Qua)  _ e RC
_ _t - “rc
— (Qrza(xz q)(t)) —e RC Qmax _ q(t) — Qmax RC  — q(t) = Qmax (1 —e RC

|
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It WOU[&[ be nice to get a feel for how fast a capacitor/resistor combination will
charge or discharge.

To that enc[, how much

charge would the cap have "faagfgg}
accumulated after a time equal
to RC? Q= Quuay |~
RC Q= 87Qupux f-mnmmmmmmmmmmm e .
M t =Qm 1 t/RC
q(t=RC)=Q,,,, (1 —e K¢ ] K0 N S—— i ( )
=Qu(1-¢7)
1
= Qmax 1 T
e
= Qmax (1 - 37) - 63Qmax T :IRC 21 =2RC time

q_ﬁiS time is defined as one time constant T. It is the amount of time it takes the
capacitor to charge to 63% of its maximum. 7Two time constants will charge it to
87% of its maximum (try the calculation if you don’t believe me).
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Summary of gmjoﬁs

g T OLJ? ﬁS of capacitor charging and discharging characteristics.

q

Q max

cﬁarge vs. time
(discharging)

current vs. time
(both charging and discharging)

cﬁarge vs. time
(charging)

q(t) = Q. (1

b
_e RC

|
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Observations:

- The ga[vanometw—engineerecf ammeter consists i R.=? i
of a 12 Q2 galvanometer in parallel with (in this | W\/_ i
case) a 3x107°CQ resistor (that is, essentially a - | R=12g BT19995A i
wire). As the equivalent resistance of a parallel : /\/\/\/ i
combination is smaller than the smallest resistor i T=5x10°A i
in the combination, that means that the S i
equivalent resistance of the ammeter is REALLY
SMALL—exactly as expect.

e |
—~The gaﬁ»anome&r-engineered voltmeter consists of i i
galvanometer and, in this case, an additional 40,000 €2 | R,=12Q R i
resistor in series. As the equivalent resistance of a __M |
series combination 1s larger than the largest resistor i i,=5x10" A |

| |

in the combination, that means that the equivalent |
resistance of the voltmeter is REALLY Big—again,
exactly as expect.

—_—_——— - e —- — — a1

49.)




General ‘l‘qﬁ)rmation

Electric Fields

—-electric ﬁe[cfs (abbreviated as £-flds),
with units of newtons per coulomb or volt
per meter, are modified force fields
(release a charge in an E-fld and it will
accelerate);

—-electric ﬁe[cfs are generated with the
presence of charge;

—-an electric ﬁe[a[’s direction is defined as
the direction a positive charge will
accelerate if released in the field,

—-electric ﬁe[cf [ines:
--go ﬁom positive to negative charge;
--icfenufy the E-fld’s direction in a region;

——are closer wgetﬁer where E-flds are
more intense;

Magnetic Fields

--magnetic ﬁe[ds (abbreviated as B-flds),
with units of feslas in the MKS system, are
NOT modified force fields (release a
charge in a B-fld and it will just sit there);

--magnetic forces do exist when a
charge moves through a B-fld—they
are centripetal and are governed by the
relationship: F = qvxB

--B-ﬁe(cfs are generated by charge in motion;

--a CB-fiefcfs direction is defined
as the direction a compass

points when placed in the field,

S 2
ﬁ", =2
G S o>
i >

--magnetic ﬁe[cf [ines:
--go ﬁom north to south pole, or circle
around current carrying wire;
--iafenuﬂ the B-fld’s direction in a region;
--are closer Wgetﬁer where B-flds are

more intense; 50)




‘Magneu’c Fields




‘Magnetic ‘Force

Wﬁen C ﬁCL?’ g € MOVeS through a magnetic field, it may or may not feel a force,
depending upon its motion. If present, that force will be:

F = qvxB

The magnituaﬁe 1S | 15| = q| Vl | ]§| sin 0, where ¢ is the size of the charge,
v| is the magnitude of the velocity vector, | B| is the magnitude of the magnetic
field and O is the angle between the line of the two vectors.

The direction is determined
using the right-hand rule.

sketch courtesy of
Mr. White

51.)




fxamyfe 3: Ac ﬁ&l?’ ge Ol of mass m 1s moving with constant velocity v at
right angles to a magnetic field B. (idea courtesy of Mr. White)

a.) What kind of motion will 1t execute?

Because magnetic forces are centripetal, the
mass will follow a circular path.

b.) What is the radius of the motion’s path?

:E:;Eifnt:

qvxB=ma

cent

= qvBsin90° = m—
R
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fxamy(e 5 (mass syectromewr): An unknown massis == 0ge========-—-.

volatalizes (made into a gas), had its molecules singly ionized
(had one electron stripped away), accelerated through a -
potential difference to give them

velocity, and sent through a velocity QO ® & & ©
trap made up of a 95,000 V/m E-fld
and a .93 teslas B-fld. The
molecules that make it through the
trap move into a region in which
there is only the B-fld.

a.) What is the velocity of the molecules that make it through
the trap?

qE =qvB

Y
_E_95x10 Al

B 93T
=1.02x10° m/s

= V

53)




Other Devices

A little more sophisticated version of a motor required one bit of information that
would normally not be covered until next chapter.

It is charge in motion that generates
magnetic fields. With current carrying coils,
the generated magnetic fields are down the
axis and through the face of the coil.

‘A ﬁomcfy trick to determine the direction of a
current carrying wire’s B-fld is to lay your right ~ direction of
hand on the coil with your fingers following the B-fld
direction of current in the coil. The direction in

which your extended right-thumb points

this end of

coil acts like
1dentifies the direction of the coil’s B-fld. a north pole

Note that with the B-fld extending along the axis as it does, the coil’s ends look
like north and south poles.

With that, consider the following:
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OerSted (1 820) (courtesy of Mr. White) -

If the wire is grasped with the right hand, with the thumb
in the direction of current flow, the fingers curl around the
wire in the direction of the magnetic field.

The magnitude of B is the same everywhere on a circular
path perpendicular to the wire and centered on it.
Experiments reveal that B 1s proportional to 7, and
inversely proportional to the distance from the wire.

Obscure observation ﬁom Fletch: Notice
that if the current-carrying wire is
straight and you draw a vector from any
point on the wire to a point of interest,
the direction of the magnetic field at that
point will be perpendicular to the plane
defined by that vector and the direction
of the current (treated like a vector).

c[eﬁne GS-ch[

with compass

=
=

D
N—1

(

B-fld

any vector -
om wire

N
~
~
—

vector c&eﬁning > Planeo “any vector”

current “i” and “" is P lane Qf
Joage—CB-fTJ is
})egoenc[icu[ar to that
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‘Biot-Savart does a similar thing for magnetic fields, with the exception that
it incorporates the direction of the B-field into the calculation.

Syec[ﬁ’ca[fy, it observes that the
differential magnetic field dB at Point P

due to the current in the differentially dB out .P
small section ds of wire 1is: §
A r
dE:(“o)Idf‘r §

4mt) r ' 0

wﬁere:

I 1s the current in the wire
LL, = permeability of free space
=47x107 Tem/A
ds is a section of current-carrying wire
ds is a vector in the direction of the current at ds
I 1s a vector from ds to the point of interest

r is a unit vector in the direction of ¥

0 is the angle between r and ds

- >

ds

graphic courtesy
of Mr. White

Notice the cross product gives a

direction that 1s perpendicular to
the plane defined by r and 1 at ds
as advertised earlier. 56)




With no CB-ch[s being generated at Point O due to
the sections of wire that have current moving
directly toward or away from the point, we turn
to the only other section in the system:

Again, c[eﬁning the differential length ds and
the unit vector 1, for the curved sections, and
noticing how ds is related to dO (see insert),
the cross product becomes:

‘dB ‘ _ uo I|d§2Xf2| _ ““0 IdSZ sin 90°
1\ agn (R)2 \4r (R)2 How ds is related
u to R and df .
= szdB =(4 © 2)des2
= > )IJ. Rd@ EI/G ="
\ 4TER point O’—/:::"’— ——R_——
(el )e
4mR

Also, crossing ds, into r, yields a direction INTO the page, which is
exactly what the right-thumb rule would have given you!
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Because the force re[au’onsﬁi}o between a current-carrying wire and the B-fId the
wire 1s bathed in 1s known, we can write:

‘152‘ = i2|EX]§1

— IZL( ”“011 )
2Ta

Now for the fun—finding the direction of the force
on the right-hand wire: Start with the cross product.

B, =i,[xB,

t:nl

L is out of the page (in the direction of the
right-hand wire’s current), and we’ve
already determined the direction of the B-
fld due to the left-hand wire in that region
(it’s downward at the right-hand wire).

Executing LxB, yields a vector direction to
the right, AWAY from the left wire.

58.)




Exam}o(e O: A current carrying wire has current
directed out of the page as shown. For the dotted path
shown, 1s the net circulation equal to L i ?

B

Y'ES, Ampere’s Law always works (just like Gauss’s
Law always works, even when a geometry makes its
integral impossible to solve).

The real question is whether using Ampere’s Law is a reasonable thing to try to
do in this case . . . and the answer to that question is NO!

Wﬁy? Look at the symmetry.
The current through the face is easy—it’s just 7, but the angle between d1
and the B-fld evaluated at d1, is different than the angle between d1, and
the B-fld evaluated at d1, . That’s going to make the integral nasty.

Consi.(ffzr the problem AN qgfg odl = Molpr |

exploiting symmetry: 7/ i®/)§\ di — B 95 dl 09660 —wi
‘E‘ is the same at (\ R /’ , W, i
every point on \ / = B(2mR)=pi = B= 21tR

the path, so: ' '
©patl, 50 ‘BAM! The B-fld for a current-carrying wire. s,




ﬁOWL CLBOV&’

EXCLWL]O(Q 8: Derive an expression for the B-fld
inside an N-turn toroid (a coil with N winds that
curves back on itself)

--Because the CB-fTo[ for a toroid circles along
the toroid’s axis,the Amperian path that is
applicable here is a circle of radius r. Amperian

--‘J\ﬂ)u'ng that N wires pass through the
Amperian path, the current through the face 1s
Ni and we can write:

@B. dl = Hoithfu . from the side:
= Bcﬁdlg@s/O" =u, (Ni) ]

— B(2mr)=p, (Ni) i

-Notice that B varies with 7.
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T ricﬁery

There is still another

right-hand rule that can be
used to determine the
direction of the magnetic field
due to current through a coil.
It’s easy (and fun!).

Lay yOUT’ right-hand on the
coil with your fingers pointing
in the direction of the current.
The direction your thumb points 1s the direction of the B-fld down the axis of the
coil.

61.)




EXOLTH}O[Q 9. Determine the B-fld down the axis of a =
current-carrying coil (a solenoid), where 7 1s the number
of turns per unit length in the coil (see cross-section).

We need a rectangular Amperian path. Why? d, A\ V dl,

—The Joatﬁs ]oegoencficu[ar to the coil will i
experience zero B-fld;

—~The }oatﬁ outside the coil is far enough s
out so the B-fId is essentially zero; B4

(ignoring

--The }Oatﬁ inside the coil experiences a non- effects)‘
zero B-fld.

The current I -

through the CJ-?B edl =W, iy

free B.dl, +| BedL+| BedL+| B.dl,=p,[(nL)i

1, = (nL)i jsl ! 9%, Js 3 JS4 4 I:( ) :I
d

the number of B S/I/: " [ (n }/51]

wires thru the
face. SO: Baxis - Monl

T 0
Where nL iS Baxis th?@d)o + /gva.h 12 +/B7\v)vayout JL d13 _*_/BZY?}] d14 — uo I:(HL)l:l
=
=
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@eciafing When to “Use tamjaere’s Law
versus ‘Biot Savart

‘Use ﬂmyere’s L aw when:

--You can ofeﬁ’ne a path upon which the magnitude of B 1s constant over the
entire path (this will normally be a circular path); or

--You can déﬁne a combination of paths some of which will have a magnitude of
B that 1s constant over the section(s), some will have B equal to zero over the
section(s) and/or some will have the evaluation of Be dl equal to zero over the
section(s) . . . (these multiple paths are usually rectangular).

‘Use ‘Biot Savart when:

--You can’t use Ampere’s Law. (In other words, Ampere’s Law should be your
first choice.)
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of the area, as B - ( L, )i shows.
WIIc 27[

fxamjofe 10: Derive an expression for the 1€ >
magnetic flux through the rectangular path shown due to I )
the B-fld set up by the current-carrying wire (a very i
cool, classic problem). [ 2
1 1 b
The oﬁﬁcuﬁy here is in the fact that the B-fId from i i
the current carrying wire 1sn’t constant over the face i
Il v
X - >||C

We have to determine the differential magnetic flux d®, dx
through a differentially small surface area b(dx ) where the B-fId
is evaluated constant, then sum all those d®'s over the entire face. Starting:

dd, =B-dA O, = [do,
_[ R )(bdx)cosoo b ) peradx _ [ pyib
B =| =0 —=| ==— |Inx|"
\ 21X = 21 /L—C X ( 2T ) o

(553 (2 Ve )] 2 o[22

\ 2T ) 2T C
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So q,,, =€,P,. Butin this case, g, 1S capacitor
the charge on one plate of the capacitor.
If we calculate the rate at which that
charge 1s changing (the rate at which the
capacitor 1s charging), we get the current
in the circuit. In other words:

L

o dt
_ d(eo(DE)
O dt
dD,,

° dt ﬂm}oerian }oatﬁ

=&

Caps don’t have charge move through them, but the electrostatic repulsion between
their plates creates the illusion that current is flowing through the cap. Faraday,
apparently, deduced that that virtual current (my words, not his) was the
displacement current needed for Ampere’s Law to work. In any case, the complete
form of Ampere’s Law is:

I dd
Bedl=p 1, + € £
¢ u“o thru uo( 0 dt

where 1t’s YOUR CHOICE which
) term on the right you evaluate,

depending upon the circumstances. )




‘Famcfay’s Law




‘Famcfay’s Law

‘Tﬁe creation of a conventional
current flow as the coil leaves the
constant B-fld has been explained
using what you already know from the
Classical Theory of Magnetism.
Faraday viewed it differently. His
approach will allow us to analyze
difficult situations that are not so
easily untangled with the thinking
we’ve just presented.

Far OLG[OL , who was not interested
in the dipole, noticed that you only get
an induced current when there is a

changing magnetic flux through the face of the coil. There could be a flux through

get >(<d
5| |no chan ing @7} T

X X X XX

changing @,

no 1i uced

>{} lindué{

l<

XX X X X

the coil, but if it wasn’t/isn’t changing, no induced current.
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fxamjo[é 3: A bar on frictionless XX PN XX X
rails 1s made to move with velocity v R X X X X X X X X X X B
through a B-fld as shown in the sketch X X Xpl X X X X X X
(you are looking down on the system). X X X %( X_X X X X X
v
a.) Derive an expression for the f S - o X XX
induced EMF in the “coil.” T X graphic courtesy

of Mr. White

The tecﬁniclue here is to write out a general expression for the magnetic flux,
then take its derivative. Doing so yields:

®, =B-A
B= BA(;@S/OO
:B(IX)

le)

gt
=-Bl—  (-Blv)
dt
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Lenz’s Law

ﬂfrﬁougﬁ Far cw[ay 's Law allows us to determine the magnitude of the
induced EMF set up by a changing magnetic flux through the face of a coil and, by
extension, the magnitude of the induced current through the coil, it says nothing
about the direction of the induced current set up by the EMF. Lenz’s Law is
designed to fill in that gap.

B

Lenz’s £aw maintains that an induced
EMF through a coil (or loop) will produce an
induced current that will create its own
induced magnetic flux, and that that induced
magnetic flux will oppose the change of
magnetic flux through the loop that started —
the process off in the first place. >

gmpﬁie courtesy
C onﬁxsecf? That’s the statement of Lenz’s Law in the raw. Its of Mr. White

message can be more economically unpacked with three easy steps.

vV VIV v vY
DV
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c.) What is the induced

current in the coil? i, = Sli{d VEVEVEVEVES
_Bav i *; TR X X X X X

R a \ < ></'\ ><V>< X X X

d.) What is the direction of the current? l Xl X' X X X X
Lenz’s Law: i> [M X X X X X
--external B-fld into the page; X X X X X X

--magnetic flux increasing,
--so induced B-fld OUT OF PAGE (opposite external field). Current has to
flow counterclockwise to achieve that.

e.) The induced current will interact with the external B-fId and feel a force. In
what direction will be that net force?

The magnimo{e would be the magnitude of F_. = iLxB, which we could figure
out, but all that was asked for was the direction, which 1s the direction of that
cross product. The force on the two horizontal wires will cancel, but the force
on the vertical wire in the B-fld will be to the left, as shown on the sketch.
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c.) 1s there an induced current in the B

secondary coil when the switch is opened %p'\
™~

after being closed for a long time? If so, in
what direction will the current be?

The direction cf the coil’s B-fld down the coil’s
axis won’t changed, but now it will diminish
to zero. That means the induced EMF in the

secondary coil will produce an induced B-fld
that 1s in the SAME DIRECTION AS the

A B

/

A

M

/

W/ \

Lig

=11

(grayﬁia, mocfzﬁecf,
courtesy of Mr. White)

external field, or to the left. That will require a counterclockwise induced

current.

ind
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d.) What will the
graph of the
current in the
second coil look
like as a function
of time?

B

€

coil ?

ind ?

1

coil

ind

switch closes
tl

switch thrown at t, and t,

switch opens
t2

steady state

time

switch opens

switch closes

&

n

d:_Ns

time

Ady
At
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fxamja[e 12 For the situation shown

a.) Derive an expression for the magnitude of the
E-fld should the B-fld increase.

Lenz’s Law maintains the induced current, hence the
induced E-fld, will be counterclockwise. With the
area vector in the direction of the external magnetic
field and d1 appropriately defined (see previous slide

for explanation, and see sketch for result), we can
conclude:

The external Z)’j%fls into the page, so the angle between that B-fld and the area
vector will be 0°; the angle between E and d1 is 180°, so we can write:

Notice: If the external

_d%; _ g')]:j edl B-fld was decreasing,
dt d[B( &) 00] dB/dt would be
Tk jcosb | o negative making F
= dt B E(j)dl cos 180 negative. That would

11 us the E-
_%Rz(dB) 2;7{R . Eo z(dB) tell us the .f.ldwas

dt opposite originally
assumed!
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Q':XCLWL}?[Q 16: Derive an
expression for the inductance of a
solenoid of length /, radius » and
total number of turns V.

@, =B_ . Acos0’

coil

= BcoﬂA
= (uom)(nrz)
~(u Ei (71:1’2) Cyfwe [et n be the number of
°L 4 di N dd, winds per unit length (i.e.,
dt dt N/L), and noting the volume
D, of the coil is r’L, we can
= L= NT write:
2 2
N , [ = L N-1r
(1, 1)) e
=N ,
i M, (nk)” mr
w N*mr’ Jé
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f) le current has been flowing for a long time,
what happens when you open the switch?

An attempwc[ drop in battery-current will
instigate an attempted drop in B-fld down the
axis of the coil. That will induce an EMF that
fights the change, which in this case means it
will force current to flow even longer than it

N

switch oyenecf

normally would. Due to the symmetry of the after long time Yo
situation, 1t will take one time constant for the
current to drop 63% of its maximum.
raph of current function:
g.) The switch is gy f ﬁL
closed, then after a i
long time it is 871, \ drops 63%
opened. What will  ¢3; AN
a graph of the i
current vs time look i
|

like for the system?
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CKnowing the power mu’ng of an inductor, we can
write:

dW —dU

dt dt
__1;:di
=—L1 /dt
‘Note: The negative sign in the second line is
due to the fact that the power stored in an

inductor (versus the power dissipated by an
inductor) will (using Faraday’s Law) be:

P=

Continuing:  —dU _ g /dt

= dU=(Li)di

= [du= Lj

= U, _lLl
2

switch thrown
att=0

|,

1€ = i(—ng
dt
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